Design, develop and implement the specified algorithms for the following problems using C/C++ Language in
LINUX / Windows environment.

1. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

2. Using Open, implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

3. a. Obtain the Topological ordering of vertices in a given digraph.
 b. Compute the transitive closure of a given directed graph using Warshall's algorithm.

4. Implement 0/1 Knapsack problem using Dynamic Programming.

5. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.

6. Find Minimum Cost Spanning Tree of a given undirected graph using Kristal's algorithm.

7. a. Print all the nodes reachable from a given starting node in a digraph using BFS method.
 b. Check whether a given graph is connected or not using DFS method.

8. Find a subset of a given set S = {s1, s2, sn} of n positive integers whose sum is equal to a given positive integer d. For example, if S = {1, 2, 5, 6, 8} and d = 9 there are two solutions {1,2,6}and {1,8}. A suitable message is to be displayed if the given problem instance doesn't have a solution.

9. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.

11. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm. Parallelize this algorithm, implement it using Open and determine the speed-up achieved.

12. Implement N Queen's problem using Back Tracking.
1. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

Quick Sort Method:

Quick Sort divides the array according to the value of elements. It rearranges elements of a given array A[0..n-1] to achieve its partition, where the elements before position s are smaller than or equal to A[s] and all the elements after position s are greater than or equal to A[s].

\[
\begin{align*}
\text{All are} & \leq A[s] & & \text{all are} & \geq A[s]
\end{align*}
\]

Algorithm:

```plaintext
QUICKSORT(a[l..r])
//Sorts a subarray by quicksort
//Input: A subarray A[l..r] of A[0..n-1], defined by its left and right indices l and r
//Output: Subarray A[l..r] sorted in nondecreasing order
{
    if l<r
    {
        s← Partition(A[l..r]) //s is a split position
        QUICKSORT(A[l..s-1])
        QUICKSORT(A[s+1..r])
    }
}
```

Algorithm:

```plaintext
Partition(A[l..r])
//Partition a subarray by using its first element as its pivot
//Input: A subarray A[l..r] of A[0..n-1], defined by its left and right indices l and r (l<r)
//Output: A partition of A[l..r], with the split position returned as this function's value
{
    p ← A[l]
    i ← l; j ← r+1
    repeat
        { repeat i ← i+1 until A[i] >=p
          repeat j ← j-1 until A[j] <=p
          swap(A[i],A[j])
        } until i>=j
    swap(A[i],A[j]) // undo last swap when i>=j
    swap(A[l],A[j])
    return j
}
```

Complexity:

\[
C_{\text{best}}(n) = 2C_{\text{best}}(n/2) + n \text{ for } n>1 \quad C_{\text{best}}(1) = 0
\]
Cworst (n) (n^2)
Cavg (n) ≈ 1.38n\log_2n

Program:

/*To sort a set of elements using Quick sort algorithm.*/
#include<stdio.h>
#include<time.h>
define max 500
void qsort(int [],int,int);
int partition(int [],int,int);
void main()
{
 int a[max],i,n;
clock_t s,e;
crscrl();
 printf("Enter the value of n:"); scanf("%d",&n);
 for(i=0;i<n;i++)
 a[i]=rand()%100;
 printf("The array elements before\n"); for(i=0;i<n;i++)
 printf("%d\t",a[i]);
 s=clock();
delay(100);
 qsort(a,0,n-1); e=clock();
 printf("Elements of the array after sorting are:\n"); for(i=0;i<n;i++)
 printf("%d\t",a[i]);
 s=clock();
delay(100);
 qsort(a,0,n-1); e=clock();
 printf("Time taken:%f",(e-s)/CLK_TCK);
}
void qsort(int a[],int low,int high)
{
 int j;
 if(low<high)
 {
 j=partition(a,low,high);
 qsort(a,low,j-1);
 qsort(a,j+1,high);
 }
}
qsort(a,j+1,high);

int partition(int a[], int low, int high) {
 int pivot, i, j, temp;
 pivot = a[low];
 i = low + 1;
 j = high;

 while(1) {
 while (pivot > a[i] && i <= high)
 i++;
 while (pivot < a[j])
 j--;
 if (i < j) {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 } else {
 temp = a[j];
 a[j] = a[low];
 a[low] = temp;
 return j;
 }
 }
}
Note:

Program to be executed for various sizes of input. Table to be filled with data

<table>
<thead>
<tr>
<th>Size: n</th>
<th>Ascending</th>
<th>Descending</th>
<th>Random Order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input</td>
<td>Time taken</td>
<td>Input</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Using OpenMP, implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

Merge Sort Algorithm:

Merge sort is a perfect example of a successful application of the divide-and-conquer technique.

1. Split array A[1..n] in two and make copies of each half in arrays B[1.. n/2] and C[1.. n/2]
2. Sort arrays B and C
3. Merge sorted arrays B and C into array A as follows:
 a) Repeat the following until no elements remain in one of the arrays:
 i. compare the first elements in the remaining unprocessed portions of the arrays
 ii. copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array
 b) Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

Algorithm: MergeSort (A [0...n-1])

//This algorithm sorts array A [0...n-1] by recursive mergesort.
//Input: An array A [0...n-1] of orderable elements.
//Output: Array A [0...n-1] sorted in non-decreasing order
{
 if n>1
 { Copy A [0…ln/2-1] to B [0…ln/2-1]
 Copy A [ln/2… n-1] to C [0…'[n/2]'-1]
 MergeSort (B [0…ln/2-1])
 MergeSort (C [0…'[n/2]'-1])
 Merge (B, C, A)
 }
 }

Algorithm: Merge (B [0…p-1], C [0…q-1], A [0…p+q-1]) //Merges two sorted arrays into one sorted array.
//Input: Arrays B [0…p-1] and C [0…q-1] both sorted. //Output: Sorted array A [0…p+q-1] of the elements of B and C.
{
 i ← 0; j←0; k←0
 while i<p and j<q do
 {
 if B[i] <= C[j]
 A[k] ← B[i]; i← i+1
 else
 A[k] ← C[j]; j← j+1
 k ← k+1
 }
 if i=p
copy C [j…q-1] to A[k…p+q-1]
else

 copy B [i…p-1] to A[k…p+q-1]

}

Complexity:

All cases have same efficiency: Θ(n log n)
Number of comparisons is close to theoretical minimum for comparison-based
sorting: log n! = n log n - 1.44 n
Space requirement: Θ(n) (NOT in-place)

Program:

/*To sort a set of elements using Merge sort algorithm.*/

#include "stdafx.h"
#include<omp.h>
#include<time.h>
#include<stdio.h>
#include<iostream>
#include<conio.h>
define max 100

void mergesort(int[100],int,int);
void merge(int[100],int,int,int);
at a[max];

void main()
{
 int i,n;
 clock_t s,e;
 printf("Enter the no.of
elements\n"); scanf_s("%d",&n);
 printf("Elements of the array before sorting\n");
 for(i=0;i<n;i++)
 {
a[i]=rand()%1000;
 printf("%d",a[i]);
 }
 s=clock();
 mergesort(a,0,n-1); e=clock();
 printf("nElements of the array after
sorting\n"); #pragma omp parallel for
for(i=0;i<n;i++)
void mergesort(int a[100], int low, int high)
{
 int mid;
 if(high>low)
 {
 mid=(low+high)/2;
 mergesort(a,low,mid);
 mergesort(a,mid+1,high);
 merge(a,low,mid,high);
 }
}

void merge(int a[100], int low, int mid, int high)
{
 int h=low,j=mid+1,i=low,b[max],k;
 #pragma omp parallel for
 while((h<=mid)&&(j<=high))
 {
 if(a[h]<=a[j])
 {
 b[i]=a[h];
 h=h+1;
 }
 else
 {
 b[i]=a[j];
 j=j+1;
 }
 i=i+1;
 }
 if(h>mid)
 {
 #pragma omp parallel for
 for(k=j;k<=high;k++)
 {
 b[i]=a[k];
 i++;
 }
 }
 else
 {
 }
#pragma omp parallel for
for(k=h;k<=mid;k++)
{
 b[i]=a[k];
i++;
}

#pragma omp parallel for
for(k=low;k<=high;k++)
a[k]=b[k];

OUTPUT

Enter the no.of elements
10
Elements of the array before sorting
41 467 334 500 169 724 478 358 962 464
Elements of the array after sorting
41 169 334 358 464 467 478 500 724 962
the time taken=0.000000

Note:
Program to be executed for various sizes of input. Fill the given table. Obtaining a constant value in the column “time taken” would prove that the complexity of merge sort is same in all case.
<table>
<thead>
<tr>
<th>Size: n</th>
<th>Ascending</th>
<th></th>
<th></th>
<th>Descending</th>
<th></th>
<th></th>
<th>Random Order</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input</td>
<td>Time taken</td>
<td>Input</td>
<td>Time taken</td>
<td>Input</td>
<td>Time taken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3(a). Obtain the Topological ordering of vertices in a given digraph.

Topological Ordering:

This method is based on decrease and conquer technique a vertex with no incoming edges is selected and deleted along with no incoming edges is selected and deleted along with the outgoing edges. If there are several vertices with no incoming edges arbitrarily a vertex is selected. The order in which the vertices are visited and deleted one by one results in topological sorting.

1. Find the vertices whose indegree is zero and place them on the stack
2. Pop a vertex u and it is the task to be done
3. Add the vertex u to the solution vector
4. Find the vertices v adjacent to vertex u. The vertices v represents the jobs which depend on job u
5. Decrement indegree[v] gives the number of depended jobs of v are reduced by one.

Algorithm topological_sort(a,n,T)

```
//purpose :To obtain the sequence of jobs to be executed result in topological order
// Input:a-adjacency matrix of the given graph //n-the number of vertices in the graph  
//output:
// T-indicates the jobs that are to be executed in the order
For j<0 to n-1
    do Sum=0
    For i< 0to n-1 do
        Sum<-sum+a[i][j]
    End for
    Top < -1
    For i< 0 to n-1 do
        If(indegree [i]=0)
            Top <-top+1
            S[top]< - i
    End if
    End for
    While
    top!= 1 u<-
    s[top] top<-
    top-1
    Add u to solution vector T
    For each vertex v adjacent to u
        Decrement indegree [v] by one
        If(indegree [v]=0) Top<-
            top+1 S[top]<-v
    End if
End if
End for
End while
Write T
return
```

Complexity: Complexity of topological sort is given by O(V^2).
Program:
/*To obtain the topological order in of vertices in a digraph.*/
#include<stdio.h>
void findindegree(int [10][10],int[10],int);
void topological(int,int [10][10]);
void main()
{
 int a[10][10],i,j,n;
 clrscr();
 printf("Enter the number of nodes:"); scanf("%d",&n);
 printf("Enter the adjacency matrix\n"); for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 scanf("%d",&a[i][j]);
 printf("The adjacency matrix is:\n"); for(i=1;i<=n;i++)
 {
 for(j=1;j<=n;j++)
 {
 printf("%d\t",a[i][j]);
 }
 printf("\n");
 }
 topological(n,a);
 getch();
}
void findindegree(int a[10][10],int indegree[10],int n)
{
 int i,j,sum;
 for(j=1;j<=n;j++)
 {
 sum=0;
 for(i=1;i<=n;i++)
 {
 sum=sum+a[i][j];
 }
 indegree[j]=sum;
 }
}
void topological(int n,int a[10][10])
{
 int k,top,t[100],i,stack[20],u,v,indegree[20];
k=1;
top=-1;
findindegree(a,indegree,n);
for(i=1;i<=n;i++)
{
 if(indegree[i]==0)
 {
 stack[++top]=i;
 }
}
while(top!=-1)
{
 u=stack[top--]; t[k++]=u;
 for(v=1;v<=n;v++)
 {
 if(a[u][v]==1)
 {
 indegree[v]--;
 if(indegree[v]==0)
 {
 stack[++top]=v;
 }
 }
 }
}
printf("nTopological sequence is\n"); for(i=1;i<=n;i++)
 printf("%d\t",t[i]);
Enter the number of nodes: 5

Enter the adjacency matrix
0 0 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

The adjacency matrix is:
0 0 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

Topological sequence is
2 1 3 4 5
3(b). Compute the transitive closure of a given directed graph using Warshall's algorithm.

Warshall’s algorithm:

The transitive closure of a directed graph with \(n \) vertices can be defined as the \(n \)-by-\(n \) boolean matrix \(T = \{ t_{ij} \} \), in which the element in the \(i \)-th row (\(1 \leq i \leq n \)) and \(j \)-th column (\(1 \leq j \leq n \)) is 1 if there exists a non trivial directed path from \(i \)-th vertex to \(j \)-th vertex, otherwise, \(t_{ij} \) is 0.

Warshall’s algorithm constructs the transitive closure of a given digraph with \(n \) vertices through a series of \(n \)-by-\(n \) boolean matrices: \(R(0), R(1), \ldots, R(n) \) where, \(R(0) \) is the adjacency matrix of digraph and \(R(1) \) contains the information about paths that use the first vertex as intermediate. In general, each subsequent matrix in series has one more vertex to use as intermediate for its path than its predecessor. The last matrix in the series \(R(n) \) reflects paths that can use all \(n \) vertices of the digraph as intermediate and finally transitive closure is obtained. The central point of the algorithm is that we compute all the elements of each matrix \(R(k) \) from its immediate predecessor \(R(k-1) \) in series.

Algorithm Warshall(A[1..n,1..n])
//Implements Warshall’s algorithm for computing the transitive closure //Input: The Adjacency matrix A of a digraph with n vertices //Output: The transitive closure of digraph
{
 \(R(0) \leftarrow A \)
 for \(k \leftarrow 1 \) to \(n \) do
 {
 for \(i \leftarrow 1 \) to \(n \) do
 {
 for \(j \leftarrow 1 \) to \(n \) do
 {
 \(R(k)[i,j] \leftarrow R(k-1)[i,j] \) or \(R(k-1)[i,k] \) and \(R(k-1)[k,j] \)
 }
 }
 }
 return \(R(n) \)
}

Complexity: The time efficiency of Warshall’s algorithm is in \(\Theta (n^3) \).
Program:
/*Compute the transitive closure of a given directed graph using Warshall's algorithm.*/

#include<stdio.h>

void warshall(int[10][10],int);

void main()
{
 int a[10][10],i,j,n;
 clrscr();
 printf("Enter the number of nodes:"); scanf("%d",&n);
 printf("Enter the adjacency matrix:\n"); for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 scanf("%d",&a[i][j]);
 printf("The adjacency matrix is:\n"); for(i=1;i<=n;i++)
 {
 for(j=1;j<=n;j++)
 {
 printf("%d	",a[i][j]);
 }
 printf("\n");
 }
 warshall(a,n);
 getch();
}

void warshall(int p[10][10],int n)
{
 int i,j,k;
 for(k=1;k<=n;k++)
 {
 for(j=1;j<=n;j++)
 {
 for(i=1;i<=n;i++)
 {
 if((p[i][j]==0) && (p[i][k]==1) && (p[k][j]==1))
 {
 p[i][j]=1;
 }
 }
 }
 }
 printf("\nThe path matrix is:\n");
```c
for(i=1;i<=n;i++)
{
    for(j=1;j<=n;j++)
    {
        printf("%d\t",p[i][j]);
    }
    printf("\n");
}
```

OUTPUT:

```
Enter the number of nodes: 5
Enter the adjacency matrix:
0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 1 0
The adjacency matrix is:
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
The path matrix is:
0 1 1 1 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
```
4. Implement 0/1 Knapsack problem using Dynamic Programming.

0/1 Knapsack problem:

Given: A set S of n items, with each item i having

- b_i - a positive benefit
- w_i - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W. i.e.

Objective: maximize $\sum_{i=1}^{n} b_i$

Constraint: $\sum_{i=1}^{n} w_i \leq W$

Algorithm: 0/1Knapsack(S, W)

//Input: set S of items with benefit b_i and weight w_i; max. weight W
//Output: benefit of best subset with weight at most W
//Define $B[k,w]$ = best selection from S_k with weight exactly equal to w

for w from 0 to $n-1$ do
 \(B[w] \leftarrow 0\)
for k from 1 to n do
 for w from W down to w_k do
 if $B[w-w_k]+b_k > B[w]$ then
 \(B[w] \leftarrow B[w-w_k]+b_k\)

\(B[W] \) is the maximum benefit.

Complexity: The Time efficiency and Space efficiency of 0/1 Knapsack algorithm is $\Theta(nW)$.
Program:

```c
#include<stdio.h>
#define MAX 50

int p[MAX],w[MAX],n;
ext knapsack(int,int);
ext max(int,int);

void main()
{
    int m,i,optsoln;
    clrscr();
    printf("Enter no. of objects: "); scanf("%d",&n);
    printf("Enter the weights:\n"); for(i=1;i<=n;i++)
        scanf("%d",&w[i]);
    printf("Enter the profits:\n"); for(i=1;i<=n;i++)
        scanf("%d",&p[i]);
    printf("Enter the knapsack capacity:. "); scanf("%d",&m);
    optsoln=knapsack(1,m);
    printf("The optimal solution is:%d",optsoln); getch();
}

int knapsack(int i,int m)
{
    if(i==n)
        return (w[n]>m) ? 0 : p[n];
    if(w[i]>m)
        return knapsack(i+1,m);
    return max(knapsack(i+1,m),knapsack(i+1,m-w[i])+p[i]);
}

int max(int a,int b)
{
    if(a>b)
        return a;
    else
        return b;
}
```
Enter no. of objects: 3
Enter the weights:
100 14 10
Enter the profits:
20 18 15
Enter the knapsack capacity: 116
The optimal solution is: 38
5. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra’s algorithm.

Single Source Shortest Paths Problem:

For a given vertex called the source in a weighted connected graph, find the shortest paths to all its other vertices. Dijkstra’s algorithm is the best known algorithm for the single source shortest paths problem. This algorithm is applicable to graphs with nonnegative weights only and finds the shortest paths to a graph’s vertices in order of their distance from a given source. It finds the shortest path from the source to a vertex nearest to it, then to a second nearest, and so on. It is applicable to both undirected and directed graphs.

Algorithm : Dijkstra(G,s)

//Dijkstra’s algorithm for single-source shortest paths
//Input : A weighted connected graph G=(V,E) with nonnegative weights and its vertex s
//Output : The length dv of a shortest path from s to v and its penultimate vertex pv for every v in V.
{
 Initialise(Q) // Initialise vertex priority queue to empty for every vertex v in V do
 {
 dv←∞; pv←null
 Insert(Q,v,dv) //Initialise vertex priority queue in the priority queue
 }

ds←0; Decrease(Q,s ds) // Update priority of s with ds
Vt←Ø
for i←0 to |V|−1 do
{
 u* ← DeleteMin(Q) //delete the minimum priority element
 Vt ← Vt U {u*}
 for every vertex u in V-Vt that is adjacent to u* do
 {
 if du* + w(u*,u)<du
 {
 du←du* + w(u*, u); pu←u*
 Decrease(Q,u,du)
 }
 }
}
}

Complexity: The Time efficiency for graphs represented by their weight matrix and the priority queue implemented as an unordered array and for graphs represented by their adjacency lists and the priority queue implemented as a min-heap, it is \(O(|E| \log |V|)\).
Program:

/*To find shortest paths to other vertices using Dijkstra's algorithm.*/

#include<stdio.h>

void dij(int,int [20][20],int [20],int [20],int);

void main()
{
 int i,j,n,visited[20],source,cost[20][20],d[20];
 clrscr();
 printf("Enter no. of vertices: "); scanf("%d",&n);
 printf("Enter the cost adjacency matrix\n"); for(i=1;i<=n;i++)
 {
 for(j=1;j<=n;j++)
 {
 scanf("%d",&cost[i][j]);
 }
 }
 printf("Enter the source node: "); scanf("%d",&source);
 dij(source,cost,visited,d,n);
 for(i=1;i<=n;i++)
 if(i!=source)
 printf("nShortest path from %d to %d is %d",source,i,d[i]);
 getch();
}

void dij(int source,int cost[20][20],int visited[20],int d[20],int n)
{
 int i,j,min,u,w;
 for(i=1;i<=n;i++)
 {
 visited[i]=0;
 d[i]=cost[source][i];
 }
 visited[source]=1;
 d[source]=0;
 for(j=2;j<=n;j++)
 {
 min=999;
 for(i=1;i<=n;i++)
 {
 if(!visited[i]
{
 if(d[i]<min)
 {
 min=d[i];
 u=i;
 }
} // for i

visited[u]=1;
for(w=1;w<=n;w++)
{
 if(cost[u][w]! =999 && visited[w]==0)
 {
 if(d[w]>cost[u][w]+d[u])
 d[w]=cost[u][w]+d[u];
 }
} // for w

} // for j

OUTPUT:

Enter no. of vertices: 6
Enter the cost adjacency matrix
999 3 999 999 6 5
3 999 1 999 999 4
999 1 999 6 999 4
999 999 6 999 8 5
6 999 999 8 999 2
5 4 4 5 2 999

Enter the source node: 1

Shortest path from 1 to 2 is 3
Shortest path from 1 to 3 is 4
Shortest path from 1 to 4 is 10
Shortest path from 1 to 5 is 6
Shortest path from 1 to 6 is 5_
6. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.

Kruskal's algorithm:
Kruskal's algorithm finds the minimum spanning tree for a weighted connected graph \(G=(V,E) \) to get an acyclic subgraph with \(|V|-1\) edges for which the sum of edge weights is the smallest. Consequently the algorithm constructs the minimum spanning tree as an expanding sequence of subgraphs, which are always acyclic but are not necessarily connected on the intermediate stages of algorithm. The algorithm begins by sorting the graph's edges in non-decreasing order of their weights. Then starting with the empty subgraph, it scans the sorted list adding the next edge on the list to the current subgraph if such an inclusion does not create a cycle and simply skipping the edge otherwise.

Algorithm: Kruskal(G)

```
// Kruskal's algorithm for constructing a minimum spanning tree
// Input: A weighted connected graph G=(V,E)
// Output: ET, the set of edges composing a minimum spanning tree of G
{ 
    Sort E in non decreasing order of the edge weights w(e_i) <= ... >= w(e_j) 
    ET ← ; ecounter ← 0 //Initialize the set of tree edges and its size 
    k ← 0 //initialize the number of processed edges while ecounter < |V|-1 do 
    { 
        k ← k + 1 
        if ET U {e_k} is acyclic 
            ET ← ET U {e_k}; ecounter ← ecounter + 1 
    } 
    return ET 
}
```

Complexity: With an efficient sorting algorithm, the time efficiency of Kruskal's algorithm will be in \(O(|E| \log |E|) \).

Program:

```c
#include<stdio.h>
int ne=1, min_cost=0;

void main()
{ 
    int n, i, j, min, a, u, b, v, cost[20][20], parent[20];
    clrscr();
    printf("Enter the no. of vertices: "); scanf("%d", &n);
    printf("Enter the cost matrix: 
"); for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
```
```c
scanf("%d",&cost[i][j]);
for(i=1;i<=n;i++)
    parent[i]=0;
printf("nThe edges of spanning tree are\n"); while(ne<n)
{
    min=999;
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
        {
            if(cost[i][j]<min)
            {
                min=cost[i][j];
                a=u=i;
                b=v=j;
            }
        }
    }
    while(parent[u])
        u=parent[u];
    while(parent[v])
        v=parent[v];
    if(u!=v)
    {
        printf("Edge %d\t(%d-%d)=%d\n",ne++,a,b,min);
        min_cost=min_cost+min;
        parent[v]=u;
    }
    cost[a][b]=cost[a][b]=999;
}
printf("\nMinimum\ncost=%d\n",min_cost); getch();
```
Enter the no. of vertices: 6

Enter the cost matrix:
999 3 999 999 6 5
3 999 1 999 999 4
999 1 999 6 999 4
999 999 6 999 8 5
6 999 999 8 999 2
5 4 4 5 2 999

The edges of spanning tree are
Edge 1 (2->3)=1
Edge 2 (5->6)=2
Edge 3 (1->2)=3
Edge 4 (2->6)=4
Edge 5 (4->6)=5

Minimum cost=15
7(a). Print all the nodes reachable from a given starting node in a digraph using BFS method.

Breadth First Search:

BFS explores graph moving across to all the neighbors of last visited vertex traversals i.e., it proceeds in a concentric manner by visiting all the vertices that are adjacent to a starting vertex, then all unvisited vertices two edges apart from it and so on, until all the vertices in the same connected component as the starting vertex are visited. Instead of a stack, BFS uses queue.

```
Algorithm : BFS(G)
//Implements a breadth-first search traversal of a given graph
//Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers in the order they have been visited by the BFS traversal
{
    mark each vertex with 0 as a mark of being “unvisited”
count ← 0
for each vertex v in V do
{
    if v is marked with 0 bfs(v)
}
}

Algorithm : bfs(v)
//visits all the unvisited vertices connected to vertex v and assigns them the numbers in order they are visited via global variable count
{
    count ← count + 1
mark v with count and initialize queue
with v while queue is not empty do
{
    a := front of queue
    for each vertex w adjacent to a do
    {
        if w is marked with 0
        {
            count ← count + 1
mark w with count
add w to the end of the queue
        }
    }
    remove a from the front of the queue
}
}
```

Complexity:

BFS has the same efficiency as DFS: it is $\Theta(V^2)$ for Adjacency matrix representation and $\Theta(V+E)$ for Adjacency linked list representation.
Program:

/*Print all the nodes reachable from a given starting node in a digraph using BFS method.*/

#include<stdio.h>

void BFS(int [20][20],int,int [20],int);

void main()
{
 int n,a[20][20],i,j,visited[20],source;
 clrscr();
 printf("Enter the number of vertices: "); scanf("%d", &n);
 printf("Enter the adjacency matrix:\n"); for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 scanf("%d", &a[i][j]);
 for(i=1;i<=n;i++)
 visited[i]=0;
 printf("Enter the source node: "); scanf("%d", &source);
 visited[source]=1;
 BFS(a,source,visited,n);
 for(i=1;i<=n;i++)
 if(visited[i]!=0)
 printf("Node %d is reachable",i);
 else
 printf("Node %d is not reachable",i);
 getch();
}

void BFS(int a[20][20],int source,int visited[20],int n)
{
 int queue[20],f,r,u,v;
 f=0;
 r=-1;
 queue[++r]=source;
 while(f<=r)
 {
 u=queue[f++];
 for(v=1;v<=n;v++)
 {
 if(a[u][v]==1 & & visited[v]==0)
 {

 }
queue[++r]=v;
visited[v]=1;

} //for v
} // while

OUTPUT:

```
Turu C++ IDE
Enter the number of vertices:4
Enter the adjacency matrix:
0 1 0 0
0 0 0 1
0 0 0 0
1 0 1 0
Enter the source node:1
Node 1 is reachable
Node 2 is reachable
Node 3 is reachable
Node 4 is reachable
```
7 (b). Check whether a given graph is connected or not using DFS method.

Depth First Search:

Depth-first search starts visiting vertices of a graph at an arbitrary vertex by marking it as having been visited. On each iteration, the algorithm proceeds to an unvisited vertex that is adjacent to the one it is currently in. This process continues until a vertex with no adjacent unvisited vertices is encountered. At a dead end, the algorithm backs up one edge to the vertex it came from and tries to continue visiting unvisited vertices from there. The algorithm eventually halts after backing up to the starting vertex, with the latter being a dead end.

```plaintext
Algorithm : DFS(G)
//Implements a depth-first search traversal of a given graph
//Input : Graph G = (V,E)
//Output : Graph G with its vertices marked with consecutive integers in the order they have been first encountered by the DFS traversal
{
    mark each vertex in V with 0 as a mark of being "unvisited". count ← 0
    for each vertex v in V do
        if v is marked with 0 dfs(v)
}

Algorithm : dfs(v)
//visits recursively all the unvisited vertices connected to vertex v by a path and numbers them in the order they are encountered via global variable count
{
    count ← count+1
    mark v with count
    for each vertex w in V adjacent to v do
        if w is marked with 0 dfs(w)
}
```

Complexity: For the adjacency matrix representation, the traversal time efficiency is in $\Theta(|V|^2)$ and for the adjacency linked list representation, it is in $\Theta(|V|+|E|)$, where $|V|$ and $|E|$ are the number of graph’s vertices and edges respectively.
Program:

/* Check whether a given graph is connected or not using DFS method.*/

#include<stdio.h>

void DFS(int a[20][20],int,int visited[20],int n);

void main()
{
 int n,a[20][20],i,j,visited[20],source;
 clrscr();
 printf("Enter the number of vertices: "); scanf("%d",&n);
 printf("Enter the adjacency matrix:\n"); for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 scanf("%d",&a[i][j]);
 for(i=1;i<=n;i++)
 visited[i]=0;
 printf("Enter the source node: "); scanf("%d",&source);
 DFS(a,source,visited,n);
 for(i=1;i<=n;i++)
 {
 if(visited[i]==0)
 {
 printf("Graph is not connected"); getch();
 exit(0);
 }
 }
 printf("Graph is connected"); getch();
}

void DFS(int a[20][20],int u,int visited[20],int n)
{
 int v;
 visited[u]=1;
 for(v=1;v<=n;v++)
 {
 if(a[u][v]==1 && visited[v]==0)
 DFS(a,v,visited,n);
 }
}
Enter the number of vertices: 4
Enter the adjacency matrix:
0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0
Enter the source node: 1
Graph is connected

Enter the number of vertices: 5
Enter the adjacency matrix:
0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 0
0 0 0 0 0
Enter the source node: 1
Graph is not connected
8. Find a subset of a given set $S = \{s_1, s_2, \ldots, s_n\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and $d = 9$ there are two solutions $\{1, 2, 6\}$ and $\{1, 8\}$. A suitable message is to be displayed if the given problem instance doesn’t have a solution.

Sum of Subsets

Subset-Sum Problem is to find a subset of a given set $S = \{s_1, s_2, \ldots, s_n\}$ of n positive integers whose sum is equal to a given positive integer d. It is assumed that the set’s elements are sorted in increasing order. The state-space tree can then be constructed as a binary tree and applying backtracking algorithm, the solutions could be obtained. Some instances of the problem may have no solutions.

```plaintext
Algorithm SumOfSub(s, k, r)

//Find all subsets of w[1…n] that sum to m. The values of x[j], 1 <= j < k, have already
//been determined. $s = \sum_{j=1}^{k-1} w[j]*x[j]$ and $r = \sum_{j=k}^{n} w[j]$. The w[j]'s are in ascending order.

{ x[k] ← 1 //generate left
  child if (s+w[k] = m)
  write (x[1...n]) //subset found
  else if ( s + w[k]+w[k+1] <= m)
    SumOfSub( s + w[k], k+1, r-w[k]) //Generate right child
  if( (s + r - w[k] >= m) and (s + w[k+1] <= m) )
  { x[k] ← 0
    SumOfSub( s, k+1, r-w[k] )
  }
}
```

Complexity:

Subset sum problem solved using backtracking generates at each step maximal two new subtrees, and the running time of the bounding functions is linear, so the running time is $O(2^n)$.
Program:
/* Find a subset of a given set S={s1,s2...sn} of n positive integers whose sum is equal to a given positive integer d. A suitable message is to be displayed if the given problem instance doesn't have a solution. */

#include<stdio.h>

void subset(int,int,int); int
x[10],w[10],d,count=0;

void main()
{
 int i,n,sum=0;
 clrscr();
 printf("Enter the no. of elements: "); scanf("%d",&n);
 printf("Enter the elements in ascending order:\n"); for(i=0;i<n;i++)
 scanf("%d",&w[i]);
 printf("Enter the sum: "); scanf("%d",&d);
 for(i=0;i<n;i++)
 sum=sum+w[i];
 if(sum<d)
 {
 printf("No solution\n"); getch();
 return;
 }
 subset(0,0,sum);
 if(count==0)
 {
 printf("No solution\n"); getch();
 return;
 }
 getch();
}

void subset(int cs,int k,int r)
{
 int i;
 x[k]=1;
 if(cs+w[k]==d)
```c
{ 
    printf("n\nSubset 
%d\n",++count); for(i=0;i<=k;i++)
        if(x[i]==1)
            printf("%d\t",w[i]);
} 
else 
    if(cs+w[k]+w[k+1]<=d)
        subset(cs+w[k],k+1,r-w[k]); 
    if(cs+r-w[k]>=d && cs+w[k]<=d)
    { 
        x[k]=0;
        subset(cs,k+1,r-w[k]); 
    }
}
```

OUTPUT:

```
Enter the no. of elements: 5
Enter the elements in ascending order: 1 2 5 6 8
Enter the sum: 9

Subset 1
1 2 6
Subset 2
1 8
```
9. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.

Traveling Salesperson problem:

Given n cities, a salesperson starts at a specified city (source), visit all n-1 cities only once and return to the city from where he has started. The objective of this problem is to find a route through the cities that minimizes the cost and thereby maximizing the profit.

Algorithm TSP(start city, current city, next city, path)

//Purpose: To find the solution for TSP problem using exhaustive search //Input: The start city, current city, next city and the path //Output: The minimum distance covered along with the path

Step 1: Check for the disconnection between the current city and the next city

Step 2: Check whether the travelling salesperson has visited all the cities

Step 3: Find the next city to be visited

Step 4: Find the solution and terminate

Program:

```c
#include<stdio.h>

int s,c[100][100],ver;
float optimum=999,sum;

/* function to swap array elements */
/* void swap(int v[], int i, int j) */
{
    int t;
    t = v[i];
    v[i] = v[j];
    v[j] = t;
}
```
/* recursive function to generate permutations */

void brute_force(int v[], int n, int i)
{
 // this function generates the permutations of the array from element i to
 // element n-1
 int j,sum1,k;
 //if we are at the end of the array, we have one
 // permutation if (i == n)
 if (i == n)
 {
 sum1=0;
 for(k=0;k<n-1;k++)
 {
 sum1=sum1+c[v[k]][v[k+1]];
 }
 printf("sum =%d
",sum1); getch();
 if (sum1<optimum)
 optimum=sum1;
 }
 else
 // recursively explore the permutations starting at index i going through
 index n-1
 for (j=i; j<n; j++) /* try the array with i and j switched */
 {
 swap (v, i, j);
 brute_force (v, n, i+1);
 /* swap them back the way they
 were */
 swap (v, i, j);
 }
}

void nearest_neighbour(int ver)
{
 int min,p,i,j,vis[20],from;
 for(i=1;i<=ver;i++)
 vis[i]=0;
 vis[s]=1;
 from=s;
 sum=0;
 for(j=1;j<ver;j++)
 {
 min=999;
 for(i=1;i<=ver;i++)
 if(vis[i] !=1 &&c[from][i]<min && c[from][i] !=0)
void main ()
{
 int ver,v[100],i,j;
 clrscr();
 printf("Enter n : ");
 scanf("%d",&ver);
 for (i=0; i<ver; i++)
 v[i] = i+1;
 printf("Enter cost matrix \n");
 for(i=1;i<=ver;i++)
 for(j=1;j<=ver;j++)
 scanf("%d",&c[i][j]);
 printf("Enter source :"); scanf("%d",&s);
 brute_force (v, ver, 0);
 printf("Optimum solution with brute force technique is=%f\n",optimum);
 nearest_neighbour(ver);
 printf("Solution with nearest neighbour technique is=%f\n",sum);
 printf("The approximation val is=%f",((sum/optimum)-1)*100); printf(" % ");
 getch();
}
Enter n : 5
Enter cost matrix
0 3 1 5 8
3 0 6 7 9
1 6 0 4 2
5 7 4 0 3
8 9 2 3 0

Enter source : 1
1 2 3 4 5 sum = 24
1 2 3 5 4 sum = 19
1 2 4 3 5 sum = 24
1 2 4 5 3 sum = 16
1 2 5 4 3 sum = 20
1 2 5 3 4 sum = 23
1 3 2 4 5 sum = 25
1 3 2 5 4 sum = 24
1 3 4 2 5 sum = 29
1 3 4 5 2 sum = 20
1 3 5 4 2 sum = 16
1 3 5 2 4 sum = 24
1 4 3 2 5 sum = 32
1 4 3 5 2 sum = 23
1 4 2 3 5 sum = 28
1 4 2 5 3 sum = 24
1 4 5 2 3 sum = 24
1 4 5 3 2 sum = 19
1 5 3 4 2 sum = 24
1 5 3 2 4 sum = 28
1 5 4 3 2 sum = 24
1 5 4 2 3 sum = 25
1 5 2 4 3 sum = 29
1 5 2 3 4 sum = 32

Optimum solution with brute force technique is=16.000000
Solution with nearest neighbour technique is=16.000000
The approximation val is=0.000000 %
10. **Find Minimum Cost Spanning Tree of a given undirected graph using Prim’s algorithm.**

Prim’s Algorithm:

Prim’s algorithm finds the minimum spanning tree for a weighted connected graph $G=(V,E)$ to get an acyclic subgraph with $|V|-1$ edges for which the sum of edge weights is the smallest. Consequently, the algorithm constructs the minimum spanning tree as expanding sub-trees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from the set V of the graph’s vertices. On each iteration, we expand the current tree in the greedy manner by simply attaching to it the nearest vertex not in that tree. The algorithm stops after all the graph’s vertices have been included in the tree being constructed.

Algorithm: Prim(G)

// Prim’s algorithm for constructing a minimum spanning tree
// Input: A weighted connected graph $G=(V,E)$
// Output: E_T, the set of edges composing a minimum spanning tree of G

{
 V_T ← $\{v_0\}$ // the set of tree vertices can be initialized with any vertex
 E_T ←

 for i ← 0 to $|V| - 1$ do
 find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u) such that v is in V_T and u is in $V-V_T$
 V_T ← V_T U $\{u^*\}$
 E_T ← E_T U $\{e^*\}$

 return E_T
}

Complexity: The time efficiency of prim’s algorithm will be in $O(|E| \log |V|)$.
Program:

```c
#include<stdio.h>

int ne=1,min_cost=0;

void main()
{
    int n,i,j,min,cost[20][20],a,u,b,v,source,visited[20];
    clrscr();
    printf("Enter the no. of
    nodes:"); scanf("%d",&n);
    printf("Enter the cost
    matrix:\n"); for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
            {  
                scanf("%d",&cost[i][j]);
            }
    }
    for(i=1;i<=n;i++)
        visited[i]=0;
    printf("Enter the root node:");
    scanf("%d",&source);
    visited[source]=1;
    printf("\nMinimum cost spanning tree
    is\n"); while(ne<n)
    {
        min=999;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                if(cost[i][j]<min)
                    {
                        if(visited[i]==0)
                            continue;
                        else
                        {
                            min=cost[i][j];
                            a=u=i;
                            b=v=j;
                        }
                    }
        }
        if(visited[u]==0||visited[v]==0)
        {
```
printf("\nEdge %d\t(%d->%d)=%d\n",ne++,a,b,min);
 min_cost=min_cost+min;
 visited[b]=1;
}
cost[a][b]=cost[b][a]=999;
}
printf("\nMinimum\n cost=%d\n",min_cost); getch();
}

OUTPUT:

Enter the no. of nodes: 4
Enter the cost matrix:
 999 1 5 2
 1 999 999 999
 5 999 999 3
 2 999 3 999
Enter the root node: 1

Minimum cost spanning tree is
Edge 1 (1->2)=1
Edge 2 (1->4)=2
Edge 3 (4->3)=3
Minimum cost=6
11. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm. Parallelize this algorithm, implement it using OpenMP and determine the speed-up achieved.

Floyd's Algorithm:

Floyd's algorithm is applicable to both directed and undirected graphs provided that they do not contain a cycle. It is convenient to record the lengths of shortest path in an \(n \) by \(n \) matrix \(D \) called the distance matrix. The element \(d_{ij} \) in the \(i \)th row and \(j \)th column of matrix indicates the shortest path from the \(i \)th vertex to \(j \)th vertex \((1\leq i, j\leq n)\). The element in the \(i \)th row and \(j \)th column of the current matrix \(D^{(k-1)} \) is replaced by the sum of elements in the same row \(i \) and \(k \)th column and in the same column \(j \) and the \(k \)th column if and only if the latter sum is smaller than its current value.

![Algorithm Floyd(W[1..n,1..n])

//Implements Floyd's algorithm for the all-pairs shortest paths problem
//Input: The weight matrix W of a graph
//Output: The distance matrix of shortest paths length
{
 D ← W
 for \(k \leftarrow 1 \) to \(n \) do
 {
 for \(i \leftarrow 1 \) to \(n \) do
 {
 for \(j \leftarrow 1 \) to \(n \) do
 {
 \(D[i,j] \leftarrow \min(D[i,j], D[i,k]+D[k,j]) \)
 }
 }
 }
 return D
}

Complexity: The time efficiency of Floyd’s algorithm is cubic i.e. \(\Theta(n^3) \)
Program:

```c
#include "stdafx.h"
#include<stdio.h>
#include<iostream>
#include<omp.h>
#include<conio.h>

void floyd(int[][10],int);
int min(int,int);

void main()
{
    int n,a[][10],i,j;
    printf("Enter the no.of nodes :
    "); scanf("%d",&n);
    printf("Enter the cost adjacency
    matrix\n") ; for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
            scanf("%d",&a[i][j]);
    floyd(a,n);
    getch();
}

void floyd(int a[][10],int n)
{
    int d[][10],i,j,k;
    #pragma omp parallel for
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
            d[i][j]=a[i][j];
    }
    #pragma omp parallel for
    for(k=1;k<=n;k++)
    {
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
            }
        }
    }
    printf("The distance matrix
    is\n"); #pragma omp parallel for
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
            printf("%d ",d[i][j]);
    }
}
```

```
```c
int min (int a, int b)
{
 if(a<b)
 return a;
 else
 return b;
}
printf("%d\t",d[i][j]);
}
printf("\n");
}
int min (int a, int b)
{
 if(a<b)
 return a;
 else
 return b;
}
```
12. Implement N Queen's problem using Back Tracking.

**N Queen's problem:**

The $n$-queens problem consists of placing $n$ queens on an $n \times n$ checker board in such a way that they do not threaten each other, according to the rules of the game of chess. Every queen on a checker square can reach the other squares that are located on the same horizontal, vertical, and diagonal line. So there can be at most one queen at each horizontal line, at most one queen at each vertical line, and at most one queen at each of the $4n-2$ diagonal lines. Furthermore, since we want to place as many queens as possible, namely exactly $n$ queens, there must be exactly one queen at each horizontal line and at each vertical line. The concept behind backtracking algorithm which is used to solve this problem is to successively place the queens in columns. When it is impossible to place a queen in a column (it is on the same diagonal, row, or column as another token), the algorithm backtracks and adjusts a preceding queen.

**Algorithm NQueens (k, n)**

//Using backtracking, this procedure prints all possible placements of $n$ queens //on an $n \times n$ chessboard so that they are non-attacking

```plaintext
for i ← 1 to n do
 if(Place(k, i))
 { x[k] ← i
 if (k=n)
 write (x[1...n])
 else
 NQueens (k+1, n)
 }
```

**Algorithm Place( k, i)**

//Returns true if a queen can be placed in kth row and ith column. Otherwise it //returns false. x[] is a global array whose first (k-1) values have been set. Abs(r) //returns the absolute value of r.

```plaintext
for j ← 1 to k-1 do
 if ((x[j]=i or Abs(x[j]-i) = Abs(j-k))
 return false
```

**Complexity:**

The power of the set of all possible solutions of the n queen’s problem is $n!$ and the bounding function takes a linear amount of time to calculate, therefore the running time of the n queens problem is $O(n!)$. 
Program:

/* Implement N Queen's problem using Back Tracking.*/

#include<stdio.h>

void nqueens(int);
int place(int[],int);
void printsolution(int,int[]);

void main()
{
    int n;
    clrscr();
    printf("Enter the no.of queens: "); scanf("%d",&n);
    nqueens(n);
    getch();
}

void nqueens(int n)
{
    int x[10],count=0,k=1;
    x[k]=0;
    while(k!=0)
    {
        x[k]=x[k]+1;
        while(x[k]<=n&&!place(x,k))
            x[k]=x[k]+1;
        if(x[k]<=n)
        {
            if(k==n)
            {
                count++;
                printf("Solution %d\n",count);
                printsolution(n,x);
            }
            else
            {
                k++;
                x[k]=0;
            }
        }
        else
        {
            k--; //backtracking
        }
    }
    return;
}
int place(int x[], int k)
{
    int i;
    for(i=1; i<k; i++)
    {
        if(x[i] == x[k] || (abs(x[i] - x[k]) == abs(i - k))
            return 0;
    }
    return 1;
}

void printsolution(int n, int x[])
{
    int i, j;
    char c[10][10];
    for(i=1; i<=n; i++)
    {
        for(j=1; j<=n; j++)
        {
            c[i][j] = 'X';
        }
    }
    for(i=1; i<=n; i++)
    {
        c[i][x[i]] = 'Q';
    }
    for(i=1; i<=n; i++)
    {
        for(j=1; j<=n; j++)
        {
            printf("%c\t", c[i][j]);
        }
        printf("\n");
    }
}
OUTPUT:

Enter the no.of queens: 4

Solution 1
X  Q  X  X
X  X  X  Q
Q  X  X  X
X  X  Q  X

Solution 2
X  X  Q  X
Q  X  X  X
X  X  X  Q
X  Q  X  X